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We use a biophysical model of a local neuronal circuit to study the implications of synaptic plasticity for the
detection of weak sensory stimuli. Networks with fast plastic coupling show behavior consistent with stochas-
tic resonance. The addition of an additional slow coupling that accounts for the asynchronous release of
neurotransmitter results in qualitatively different properties of signal detection, and also leads to the appearance
of transient post-stimulus bistability. Our results suggest testable hypothesis with regard to the self-
organization and dynamics of local neuronal circuits.
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Stochastic resonance �SR� refers to the condition in which
noise and nonlinearity combine to amplify otherwise unde-
tectable stimuli �1�. This simple, yet important, phenomenon
has received much attention due to its apparent ubiquity in
many nonlinear abiotic �1� and biological �2� systems. In
particular, a number of studies have raised the possibility that
neurons �3,4� and neuronal cell assemblies �5� might utilize
SR in order to detect weak sensory stimuli �2�.

For these studies, the noise felt by individual neurons has
been assumed to arise from the random summation of a large
number of synaptic stimuli �4,6�. There is, however, another
important source of noise, that of the stochastic nature of
synaptic transmission. In particular, there can occur sponta-
neous asynchronous release �AR� of neurotransmitter at a
rate that is strongly dependent on the presynaptic Ca2+ con-
centration and hence strongly dependent on the rate of spike-
induced Ca2+ intake �7�. Since a high probability of release
can last for �0.1 s, AR constitutes a challenging example of
slow time-scale, activity-dependent noise.

The purpose of this work is to show that SR for local
circuits consisting of roughly 100 neurons �a “microcolumn”
�8�� coupled via noisy plastic synapses takes a dramatically
different form from that seen in investigations to date. As we
will see, the coherence of the response continues to depend
nontrivially on the coupling strength and the assembly size.
Furthermore, the circuit can exhibit short-term memory, by
which we mean that spiking will continue to occur for a
transient period following removal of the stimulus. These
results can be directly tested in experiments on cultured net-
works �7,9� and offer some insights into the way neuronal
systems can be organized for optimal information process-
ing. From the dynamical systems point of view, this work
represents an example of how SR phenomenology can de-
pend on the specific type of noise; this has been considered
in only a few examples to date �10�.

To proceed, we use a network model that has recently
been developed to account for the occurrence of rhythmic
reverberatory responses in hippocampal cultures �7,11�. The
neurons in the network obey Morris-Lecar-like dynamics
�12� with the membrane voltage given by

CV̇ = − Iion + Ibg + Isyn + Istim. �1�

In Eq. �1�, the ionic current Iion describes the contribution
from membrane channels �13�. The term Ibg is a background
current that represents summation of a large number of syn-
aptic stimuli from neurons that are not part of the specific
local circuit. Rather than explicitly modeling a very large
network and imposing a connectivity pattern that embodies
the local circuit notion, we instead include these
neurons implicitly by assuming �as in �6�� that their contri-

bution is described by a Langevin equation İbg=−Ibg /�n

+�D /�nN�0,1�, with �n=10 ms and N�0,1� being uncorre-
lated Gaussian noise with zero mean and unitary variance.
The synaptic current due to the local circuit is modeled as
Ii

syn=−�ḡYij�t�Vi, with ḡ� �0.5,0.8� mS /cm2 being the
maximal value of synaptic conductance, the sum running
over the set of input channels, and the term Yij as described
below. With the parameters as given in �13�, the transition
from quiescence to regular spiking occurs through a Hopf
bifurcation.

To capture the dynamical aspects of synaptic coupling, we
assume that at any time, presynaptic resources can be in a
recovered state �described by the state variable X in equa-
tions below�, in an active state �described by the state vari-
able Y�, or in an inactive state �described as Z=1−X−Y�
�14�. The dynamics for the j→ i presynaptic terminal are

Ẋij =
Zij

�r
− Xij�U��t − ts

j� + ���t − ta
j �� , �2a�

Ẏij =
− Yij

�d
+ Xij�U��t − ts

j� + ���t − ta
j �� , �2b�

Żij =
Yij

�d
−

Zij

�r
, �2c�

��c� = �max
c4

c4 + Ka
4 , �2d�

ċ =
− �c2

c2 + KCa
2 + � log� co

c
���t − ts

j� + Ip. �2e�*Author to whom correspondence should be addressed:
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At each presynaptic terminal of the ith neuron, the frac-
tion of active resources �Yij� experiences a brief increase of
magnitude UXij when, at time ts

j, an action potential from the
jth neuron invades the presynaptic terminal. Alternatively, a
relatively small amount of resource can be maintained in an
active state by the asynchronous release of synaptic resource
that occurs at times ta

j with Ca2+-dependent rate ��c� and
amplitude �. The rate of asynchronous release �probability to
observe an event during the interval �ta , ta+dt�, modeled as
the Poisson process� is taken to be a Hill function of the
presynaptic residual Ca2+ concentration, c �11,15�. This re-
sidual Ca2+ accumulates at presynaptic terminals in an
activity-dependent way that is proportional to the electro-
chemical gradient across the membrane, and is extruded into
the extracellular space by a nonlinear pump. The term Ip
ensures that the minimal Ca2+ concentration is �60 nM. Pa-
rameters are given in �16�. Note that the phasic �UXij� and
asynchronous ��Xij� terms are both proportional to the
amount of available resource, Xij, underscoring the activity-
dependent competition between these two different coupling
modes �17�.

To assess the extent to which an individual neuron and/or
a network can exhibit coherent activity, we use the coherence
of spiking �COS� measure �4,18�. Given a weak external sub-
threshold stimulation of period T, Istim�t�=1 nA

cm2 sin�2	
t
T �, the

COS measure CS is defined here as CS	 N�0.9T
=ISI
=1.1T�
N�ISI� ,

that is, the fraction of interspike intervals �ISIs� that are
within 20% of the stimulus period, T=0.1 s. All results, un-
less otherwise indicated, are for a network of N=100 neu-
rons that have probability p=0.1 to establish connections
with their peers.

We first analyze the response of an uncoupled neuronal
network to weak subthreshold periodic stimulation and dif-
ferent �controlled� intensities of synaptic background noise,
Ibg. In agreement with previous studies �3�, we find that there
exists an optimal level of noise for which a model neuron
exhibits a maximal coherence of spiking �Fig. 1�a�, dashed
line�. Coupling the model neurons by activity-dependent
synapses �as in Eqs. �2�� while setting �max=0 �no asynchro-
nous release� moves the resonant peak toward lower noise
intensities. As Fig. 1�a� �insets� shows, the location and the
height of the new peak are largely independent of the cou-
pling parameter, U. This observation is consistent with the
notion of efficient signal propagation on random graphs—
once U is above the critical coupling threshold, a SR-like
activation of one neuron will quickly spread the word to
other neurons, regardless of the exact value of U.

Introduction of activity-dependent asynchronous release
of neurotransmitter results in a qualitatively different picture.
The coherence measure as a function of evoked and asyn-
chronous release is shown in Fig. 2�a�. It is clear that the
spiking coherence increases significantly for higher values of
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FIG. 1. Stochastic resonance in dynamically coupled neuronal
networks. �a� An uncoupled cell ensemble exhibits a broad-peak
stochastic resonance with relatively weak coherence of spiking
�dashed line�. Introduction of dynamic coupling enables the effi-
cient exchange of stimulus-related information, and moves the reso-
nance peak to lower noise intensities. Once above a minimal cou-
pling threshold, different coupling strengths induce nearly the same
coherence-noise curves �superimposed lines�. Both optimal noise
intensity �top inset� and peak coherence �bottom inset� are nearly
independent of synaptic coupling. �b� Sample neuronal membrane
voltage for D=1.25�10−2, U=0.4, and �max=0.
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FIG. 2. Stochastic resonance in a network with asynchronous
release of transmitter. �a� When a slow asynchronous mode of syn-
aptic transmission is introduced in addition to the fast phasic cou-
pling, the extent of output spiking coherence depends on the
strength of the phasic coupling �U�. For clarity of presentation, only
the cases U=0.1, 0.3, 0.5, and 0.7 are shown. Both the location �top
inset� and magnitude �bottom inset� of the coherence peak are posi-
tively correlated with the strength of evoked synaptic transmission,
underscoring the fact that both kinds of synaptic transmission share
the same pool of synaptic resources. �b� Sample neuronal mem-
brane voltage for �max=0.28, U=0.4, and D=0.64�10−2.
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the resource utilization parameter U. The optimal level of
AR needed to produce maximal coherence �peaks in Fig.
2�a�� also depends on the value of U. Stronger evoked trans-
mission will quickly deplete the available resources; there-
fore, since asynchronous and evoked releases draw from the
same pool of vesicles, a higher rate of spontaneous events is
needed to achieve significant spiking coherence �top inset of
Fig. 2�a��. For higher values of �max, when the combined
action of AR and Ibg masks the stimulus by making the cell
spike more frequently, the coherence measure converges to
low values. On the other hand, strong coupling and fast
depletion of resources provide a constraint for spiking activ-
ity, resulting in higher overall coherence for higher resource
usage �bottom inset of Fig. 2�a��.

The distinctive effect of AR �as compared with Ibg� is
further assessed by analyzing the collective dynamics for
high �max �vs high D�. Subjecting the network to high-
intensity dynamics-independent noise �Fig. 3�a�� results in
high-rate, weakly correlated, activity. On the other hand, as
Fig. 3�b� shows, the combined action of strong AR and syn-
aptic depression significantly sharpens the network’s re-
sponse to the stimulus. Further, the prolonged time scale of
AR enables the network to “remember” the stimulus seconds
after its cessation �Fig. 3�c��.

The observation that coherence of spiking depends on the
strength of dynamic coupling prompted us to explore how a
network’s parameters affect its ability to detect weak stimuli.
To this end, we considered the performance of different size
networks, for a range of AR rates. For easier interpretation of

results, we assume here that, for all cases, U=0.3. Figure
4�a� shows that the profiles of COS curves are different for
different network sizes. Due to the p=const constraint, neu-
rons in larger networks are subject to higher levels of asyn-
chronous release in their inputs; as a result, the resonant peak
moves toward lower values of �max. Conversely, fixing the
value of �max and plotting the COS measure as a function of
network size �as is in Fig. 4�b�� reveals that the optimal
network size �giving maximal coherence� depends on the
level of AR at individual model synapses. Thus, in a network
with plastic coupling, synaptic parameters might provide
constraints for the sizes of cell assembly.

Stochastic resonance relies on the cooperativity between
noise, nonlinearity, and a weak subthreshold stimulus �1�. In
most examples, the noise is taken to be independent of the
characteristics of the weak subthreshold stimulus �but see
�10��. Here, we have investigated the properties of signal
processing in local recurrent neuronal networks with plastic
coupling and asynchronous release of neurotransmitter,
where the noise is inherently coupled to the signal. We found
that in plastic networks without AR, the characteristics of
stochastic resonance �location and height of peak coherence�
depend only weakly on the strength of synaptic coupling. On
the contrary, introduction of AR leads to a strong dependence
of SR properties on network parameters.

These observations suggest that asynchronous release of
neurotransmitter might play an important role in neuronal
dynamics �19�. Information that is contained in weak signals
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FIG. 3. AR induces correlated collective dynamics. Raster plots
show the firing activity of a neuronal network with U=0.4. �a� A
network with D=7.84�10−2, �max=0 exhibits high-rate, uncorre-
lated activity. On the contrary, a network with D=0, �max=0.8 �b�
exhibits burstlike, correlated collective activity. �c� A network
driven by AR shows transient bistability in its activity �top panel�
that persists for seconds after stimulus removal �bottom panel�.
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FIG. 4. System size and connectivity affect coherence of spik-
ing. �a� For a network with a uniform connection probability �p
=0.1�, the profile of coherence as a function of maximal AR rate
depends on the number of neurons. With a p=const scheme, larger
networks lead to higher per cell number of afferents that affects the
effective level of asynchronous release. �b� Optimal network size
�peaks� that gives rise to maximal coherence depends on the maxi-
mal rate of AR at model synapses. In all cases, the intensity of
background synaptic noise is D=0.64�10−2.
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should not only be detected and amplified by brain circuitry;
a network has to have the ability to transiently “hold” knowl-
edge about preceding events. As shown in �7,11�, a brief
stimulus delivered to the network evokes reverberatory ac-
tivity that is sustained by the asynchronous release of neu-
rotransmitter and lasts for several seconds. Our results �Fig.
3�c��, together with experimental observations �7� and prior
modeling �11�, suggest that AR can be instrumental in detec-
tion, amplification, and transient holding of weak sensory
stimuli.

This study leads to several potentially interesting conclu-
sions. First, we showed here that the ability of a neuron �that
is embedded in a neuronal network� to detect and amplify
weak stimuli might depend crucially on the form of feedback
from the network, and in particular on the plasticity features
of the effective connectivity. Second, our results suggest that
the plasticity of synaptic connections might provide an im-

portant constraint for the optimal number of neurons in a
local circuit. With this perspective, the local network with
strong interconnectivity is optimized for signal detection,
with distant neurons providing contextual information in the
form of an overall background noise signal. Cultured net-
works can provide an adequate framework to test the validity
of our conclusions. State of the art techniques allow one to
grow small networks of controlled size, geometry, and con-
nectivity �9�. Future experiments will determine how these
parameters affect the ability of a network to process weak
stimuli.
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